Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant Physiol Biochem ; 208: 108494, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513520

RESUMO

The role of halopriming in alleviating the detrimental effects of salinity and combined salinity-submergence was evaluated using two rice genotypes, "IR06F148" (anaerobic germination + submergence tolerant [Sub1]) and "Salt-star" (salt tolerant) with contrasting levels of tolerance. Nonprimed seeds and those primed with 1% calcium chloride (CaCl2) were germinated, and the seedlings were exposed to salinity (50 or 100 mM sodium chloride [NaCl]) and submergence (nonsaline or saline water). Salinity substantially inhibited plant height, shoot/root dry mass, and leaf area. Priming improved the resilience to 50 mM NaCl by increasing the chlorophyll content and lowering hydrogen peroxide (H2O2) production; and to 100 mM NaCl by increasing the total soluble sugars. However, apparent differences in the responses of primed "Salt-star", such as an increase in the Na+, K+, and Ca2+ levels, indicated that halopriming differentially affected the response to salt based on the salinity tolerance of the variety. Submergence reduced the shoot biomass, chlorophyll, and photosynthetic efficiency to a greater extent in "Salt-star" than in "IR06F148". Priming, especially in "Salt-star", caused a lesser reduction in the chlorophyll (Chl) and maximum quantum yield of photosystem II (Fv/Fm) but increased the total soluble sugars post-submergence, indicating a boost in the photosynthetic efficiency. The responses of the two varieties to submergence depended on their tolerance, and halopriming affected each variety differently. The metabolic and molecular changes induced by halopriming in submergence-tolerant rice may be explored further to understand the underlying mechanisms of improved resilience.


Assuntos
Oryza , Resiliência Psicológica , Plântula/metabolismo , Oryza/metabolismo , Salinidade , Peróxido de Hidrogênio/metabolismo , Cloreto de Sódio/metabolismo , Clorofila/metabolismo , Açúcares/metabolismo
2.
J Sports Med Phys Fitness ; 63(10): 1084-1092, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37410445

RESUMO

BACKGROUND: Nordic hamstring exercise is an effective method for preventing hamstring strain injury. In this study, we investigated the response of knee flexors regarding increased muscle force and fatigue when the Nordic hamstring exercise was performed repeatedly to further understand how it can prevent hamstring strain injury. METHODS: The Nordic hamstring exercise was performed 10 times by 53 athletes; knee flexor peak tensile force and the respective flexion angle were compared at different phases during this sequence: phase 1, 1st Nordic hamstring exercise force; phase 2, mean value during the 2-4th repetitions; phase 3, mean value during the 5-7th repetitions; and phase 4, mean value during the 8-10th repetitions. We also divided the knee flexor peak force into deep and slight flexion zones and evaluated changes during different phases. RESULTS: Knee flexor peak force was most significant in phase 2 and decreased during subsequent phases. The knee angle at which peak force was exerted was greatest in phase 1 and decreased thereafter. When we compared the knee flexor peak force in different flexion angle zones, increased muscle force in the slight flexion zone was greater than increased muscle force in the deep flexion zone in phases 2 and 3. CONCLUSIONS: Enhancement of the knee flexor force, especially in the slight flexion zone occurs after only a few repetitions of the Nordic hamstring exercise.


Assuntos
Músculos Isquiossurais , Traumatismos da Perna , Humanos , Fadiga Muscular , Articulação do Joelho/fisiologia , Joelho/fisiologia , Músculo Esquelético/fisiologia , Extremidade Inferior , Músculos Isquiossurais/fisiologia , Força Muscular/fisiologia
3.
Plants (Basel) ; 13(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202311

RESUMO

While internal aeration in plants is critical for adaptation to waterlogging, there is a gap in understanding the differences in oxygen diffusion gradients from shoots to roots between hypoxia-tolerant and -sensitive species. This study aims to elucidate the differences in tissue oxygen concentration at various locations on the shoot and root between a hypoxia-tolerant species and a -sensitive species using a microneedle sensor that allows for spatial oxygen profiling. Job's tears, a hypoxia-tolerant species, and sorghum, a hypoxia-susceptible species, were tested. Plants aged 10 days were acclimated to a hypoxic agar solution for 12 days. Oxygen was profiled near the root tip, root base, root shoot junction, stem, and leaf. An anatomical analysis was also performed on the roots used for the O2 profile. The oxygen partial pressure (pO2) values at the root base and tip of sorghum were significantly lower than that of the root of Job's tears. At the base of the root of Job's tears, pO2 rapidly decreased from the root cortex to the surface, indicating a function to inhibit oxygen leakage. No significant differences in pO2 between the species were identified in the shoot part. The root cortex to stele ratio was significantly higher from the root tip to the base in Job's tears compared to sorghum. The pO2 gradient began to differ greatly at the root shoot junction and root base longitudinally, and between the cortex and stele radially, between Job's tears and sorghum. Differences in the root oxygen retention capacity and the cortex to stele ratio are considered to be related to differences in pO2.

4.
Circ Heart Fail ; 15(10): e009124, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36200450

RESUMO

BACKGROUND: Exercise intolerance is a cardinal feature of heart failure with preserved ejection fraction and so far exercise training (ET) is the most effective treatment. Since the improvement in exercise capacity is only weakly associated with changes in diastolic function other mechanisms, like changes in the skeletal muscle, contribute to improvement in peak oxygen consumption. The aim of the present study was to analyze molecular changes in skeletal muscle of patients with heart failure with preserved ejection fraction performing different ET modalities. METHODS: Skeletal muscle biopsies were taken at study begin and after 3 and 12 months from patients with heart failure with preserved ejection fraction randomized either into a control group (guideline based advice for ET), a high-intensity interval training group (HIIT) or a moderate continuous training group. The first 3 months of ET were supervised in-hospital followed by 9 months home-based ET. Protein and mRNA expression of atrophy-related proteins, enzyme activities of enzymes linked to energy metabolism and satellite cells (SCs) were quantified. RESULTS: Exercise capacity improved 3 months after moderate continuous exercise training and HIIT. This beneficial effect was lost after 12 months. HIIT mainly improved markers of energy metabolism and the amount and function of SC, with minor changes in markers for muscle atrophy. Only slight changes were observed after moderate continuous exercise training. The molecular changes were no longer detectable after 12 months. CONCLUSIONS: Despite similar improvements in exercise capacity by HIIT and moderate continuous exercise training after 3 months, only HIIT altered proteins related to energy metabolism and amount/function of SC. These effects were lost after switching from in-hospital to at-home-based ET. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT02078947.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Tolerância ao Exercício/fisiologia , Volume Sistólico/fisiologia , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo
5.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232292

RESUMO

Besides structural alterations in the myocardium, heart failure with preserved ejection fraction (HFpEF) is also associated with molecular and physiological alterations of the peripheral skeletal muscles (SKM) contributing to exercise intolerance often seen in HFpEF patients. Recently, the use of Sodium-Glucose-Transporter 2 inhibitors (SGLT2i) in clinical studies provided evidence for a significant reduction in the combined risk of cardiovascular death or hospitalization for HFpEF. The present study aimed to further elucidate the impact of Empagliflozin (Empa) on: (1) SKM function and metabolism and (2) mitochondrial function in an established HFpEF rat model. At the age of 24 weeks, obese ZSF1 rats were randomized either receiving standard care or Empa in the drinking water. ZSF1 lean animals served as healthy controls. After 8 weeks of treatment, echocardiography and SKM contractility were performed. Mitochondrial function was assessed in saponin skinned fibers and SKM tissue was snap frozen for molecular analyses. HFpEF was evident in the obese animals when compared to lean-increased E/é and preserved left ventricular ejection fraction. Empa treatment significantly improved E/é and resulted in improved SKM contractility with reduced intramuscular lipid content. Better mitochondrial function (mainly in complex IV) with only minor modulation of atrophy-related proteins was seen after Empa treatment. The results clearly documented a beneficial effect of Empa on SKM function in the present HFpEF model. These effects were accompanied by positive effects on mitochondrial function possibly modulating SKM function.


Assuntos
Água Potável , Insuficiência Cardíaca , Saponinas , Animais , Compostos Benzidrílicos , Modelos Animais de Doenças , Glucose/metabolismo , Glucosídeos , Insuficiência Cardíaca/metabolismo , Lipídeos/farmacologia , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Ratos , Saponinas/farmacologia , Sódio/metabolismo , Volume Sistólico/fisiologia , Função Ventricular Esquerda
6.
J Cachexia Sarcopenia Muscle ; 13(3): 1565-1581, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35301823

RESUMO

BACKGROUND: About half of heart failure (HF) patients, while having preserved left ventricular function, suffer from diastolic dysfunction (so-called HFpEF). No specific therapeutics are available for HFpEF in contrast to HF where reduced ejection fractions (HFrEF) can be treated pharmacologically. Myocardial titin filament stiffening, endothelial dysfunction, and skeletal muscle (SKM) myopathy are suspected to contribute to HFpEF genesis. We previously described small molecules interfering with MuRF1 target recognition thereby attenuating SKM myopathy and dysfunction in HFrEF animal models. The aim of the present study was to test the efficacy of one small molecule (MyoMed-205) in HFpEF and to describe molecular changes elicited by MyoMed-205. METHODS: Twenty-week-old female obese ZSF1 rats received the MuRF1 inhibitor MyoMed-205 for 12 weeks; a comparison was made to age-matched untreated ZSF1-lean (healthy) and obese rats as controls. LV (left ventricle) function was assessed by echocardiography and by invasive haemodynamic measurements until week 32. At week 32, SKM and endothelial functions were measured and tissues collected for molecular analyses. Proteome-wide analysis followed by WBs and RT-PCR was applied to identify specific genes and affected molecular pathways. MuRF1 knockout mice (MuRF1-KO) SKM tissues were included to validate MuRF1-specificity. RESULTS: By week 32, untreated obese rats had normal LV ejection fraction but augmented E/e' ratios and increased end diastolic pressure and myocardial fibrosis, all typical features of HFpEF. Furthermore, SKM myopathy (both atrophy and force loss) and endothelial dysfunction were detected. In contrast, MyoMed-205 treated rats had markedly improved diastolic function, less myocardial fibrosis, reduced SKM myopathy, and increased SKM function. SKM extracts from MyoMed-205 treated rats had reduced MuRF1 content and lowered total muscle protein ubiquitination. In addition, proteomic profiling identified eight proteins to respond specifically to MyoMed-205 treatment. Five out of these eight proteins are involved in mitochondrial metabolism, dynamics, or autophagy. Consistent with the mitochondria being a MyoMed-205 target, the synthesis of mitochondrial respiratory chain complexes I + II was increased in treated rats. MuRF1-KO SKM controls also had elevated mitochondrial complex I and II activities, also suggesting mitochondrial activity regulation by MuRF1. CONCLUSIONS: MyoMed-205 improved myocardial diastolic function and prevented SKM atrophy/function in the ZSF1 animal model of HFpEF. Mechanistically, SKM benefited from an attenuated ubiquitin proteasome system and augmented synthesis/activity of proteins of the mitochondrial respiratory chain while the myocardium seemed to benefit from reduced titin modifications and fibrosis.


Assuntos
Insuficiência Cardíaca , Proteínas Musculares , Músculo Esquelético , Bibliotecas de Moléculas Pequenas , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Animais , Conectina/metabolismo , Diástole/efeitos dos fármacos , Feminino , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Camundongos , Camundongos Knockout , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Miocárdio/patologia , Ratos , Bibliotecas de Moléculas Pequenas/farmacologia , Volume Sistólico/efeitos dos fármacos , Proteínas com Motivo Tripartido/antagonistas & inibidores , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo
7.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808232

RESUMO

The angiotensin receptor/neprilysin inhibitor Sacubitril/Valsartan (Sac/Val) has been shown to be beneficial in patients suffering from heart failure with reduced ejection fraction (HFrEF). However, the impact of Sac/Val in patients presenting with heart failure with preserved ejection fraction (HFpEF) is not yet clearly resolved. The present study aimed to reveal the influence of the drug on the functionality of the myocardium, the skeletal muscle, and the vasculature in a rat model of HFpEF. Female obese ZSF-1 rats received Sac/Val as a daily oral gavage for 12 weeks. Left ventricle (LV) function was assessed every four weeks using echocardiography. Prior to organ removal, invasive hemodynamic measurements were performed in both ventricles. Vascular function of the carotid artery and skeletal muscle function were monitored. Sac/Val treatment reduced E/é ratios, left ventricular end diastolic pressure (LVEDP) and myocardial stiffness as well as myocardial fibrosis and heart weight compared to the obese control group. Sac/Val slightly improved endothelial function in the carotid artery but had no impact on skeletal muscle function. Our results demonstrate striking effects of Sac/Val on the myocardial structure and function in a rat model of HFpEF. While vasodilation was slightly improved, functionality of the skeletal muscle remained unaffected.


Assuntos
Aminobutiratos/farmacologia , Compostos de Bifenilo/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Músculo Esquelético/efeitos dos fármacos , Valsartana/farmacologia , Antagonistas de Receptores de Angiotensina/farmacologia , Animais , Conectina/metabolismo , GMP Cíclico/sangue , Diástole/efeitos dos fármacos , Diástole/fisiologia , Modelos Animais de Doenças , Combinação de Medicamentos , Eletrocardiografia , Feminino , Fibrose , Hemoglobinas Glicadas/análise , Músculo Esquelético/fisiologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/fisiopatologia , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Fosforilação/efeitos dos fármacos , Ratos Mutantes , Função Ventricular Esquerda/efeitos dos fármacos
8.
ESC Heart Fail ; 8(1): 139-150, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33350094

RESUMO

AIMS: Heart failure with preserved ejection fraction (HFpEF) is associated with reduced exercise capacity elicited by skeletal muscle (SM) alterations. Up to now, no clear medical treatment advice for HFpEF is available. Identification of the ideal animal model mimicking the human condition is a critical step in developing and testing treatment strategies. Several HFpEF animals have been described, but the most suitable in terms of comparability with SM alterations in HFpEF patients is unclear. The aim of the present study was to investigate molecular changes in SM of three different animal models and to compare them with alterations of muscle biopsies obtained from human HFpEF patients. METHODS AND RESULTS: Skeletal muscle tissue was obtained from HFpEF and control patients and from three different animal models including the respective controls-ZSF1 rat, Dahl salt-sensitive rat, and transverse aortic constriction surgery/deoxycorticosterone mouse. The development of HFpEF was verified by echocardiography. Protein expression and enzyme activity of selected markers were assessed in SM tissue homogenates. Protein expression between SM tissue obtained from HFpEF patients and the ZSF1 rats revealed similarities for protein markers involved in muscle atrophy (MuRF1 expression, protein ubiquitinylation, and LC3) and mitochondrial metabolism (succinate dehydrogenase and malate dehydrogenase activity, porin expression). The other two animal models exhibited far less similarities to the human samples. CONCLUSIONS: None of the three tested animal models mimics the condition in HFpEF patients completely, but among the animal models tested, the ZSF1 rat (ZSF1-lean vs. ZSF1-obese) shows the highest overlap to the human condition. Therefore, when studying therapeutic interventions to treat HFpEF and especially alterations in the SM, we suggest that the ZSF1 rat is a suitable model.


Assuntos
Insuficiência Cardíaca , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Músculo Esquelético , Ratos , Ratos Endogâmicos Dahl , Volume Sistólico
9.
ESC Heart Fail ; 7(5): 2123-2134, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32710530

RESUMO

AIMS: The prevalence of heart failure with preserved ejection fraction (HFpEF) is still increasing, and so far, no pharmaceutical treatment has proven to be effective. A key obstacle for testing new pharmaceutical substances is the availability of suitable animal models for HFpEF, which realistically reflect the clinical picture. The aim of the present study was to characterize the development of HFpEF and skeletal muscle (SM) dysfunction in ZSF1 rats over time. METHODS AND RESULTS: Echocardiography and functional analyses of the SM were performed in 6-, 10-, 15-, 20-, and 32-week-old ZSF1-lean and ZSF1-obese. Furthermore, myocardial and SM tissue was collected for molecular and histological analyses. HFpEF markers were evident as early as 10 weeks of age. Diastolic dysfunction, confirmed by a significant increase in E/e', was detectable at 10 weeks. Increased left ventricular mRNA expression of collagen and BNP was detected in ZSF1-obese animals as early as 15 and 20 weeks, respectively. The loss of muscle force was measurable in the extensor digitorum longus starting at 15 weeks, whereas the soleus muscle function was impaired at Week 32. In addition, at Week 20, markers for aortic valve sclerosis were increased. CONCLUSIONS: Our measurements confirmed the appearance of HFpEF in ZSF1-obese rats as early as 10 weeks of age, most likely as a result of the pre-existing co-morbidities. In addition, SM function was reduced after the manifestation of HFpEF. In conclusion, the ZSF1 rat may serve as a suitable animal model to study pharmaceutical strategies for the treatment of HFpEF.


Assuntos
Insuficiência Cardíaca , Animais , Diástole , Modelos Animais de Doenças , Músculo Esquelético , Ratos , Volume Sistólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...